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Abstract

We study the (hydro-)dynamics of multi-species driven by alignment. What distinguishes the different species is the protocol of 
their interaction with the rest of the crowd: the collective motion is described by different communication kernels, φαβ , between the 
crowds in species α and β. We show that flocking of the overall crowd emerges provided the communication array between species 
forms a connected graph. In particular, the crowd within each species need not interact with its own kind, i.e., φαα = 0; different 
species which are engaged in such ‘game’ of alignment require a connecting path for propagation of information which will lead 
to the flocking of overall crowd. The same methodology applies to multi-species aggregation dynamics governed by first-order 
alignment: connectivity implies concentration around an emerging consensus.
© 2020 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Multi-species dynamics — statement of main results

1.1. The (hydro-)dynamics of multi-species

We study the (hydro-)dynamics of multi-species driven by environmental averaging. The ‘environment’ consists 
of agents, each is identified by a position/velocity pair (xi

α, vi
α) ∈ (Rd , Rd). The indexing {·}iα signifies agent “i” in a 

species “α”. What distinguishes one species from another is the way they interact with the environment: let φαβ � 0
be the communication kernel between species α and β , then the dynamics describes the collective motion of agents, 
each of which aligns its velocity to a weighted average of velocities of neighboring agents — both from its own as 
well as other species,⎧⎪⎪⎨

⎪⎪⎩
ẋi
α = vi

α,

v̇i
α =

∑
β∈I

1

Nβ

Nβ∑
j=1

φαβ(|xj
β − xi

α|)(vj
β − vi

α),
i ∈ 1,2, ...,Nα, α ∈ I,

subject to initial data (xi
α, vi

α)
∣∣
t=0 = (xi

α0, v
i
α0). Here Nα is the size of the species α ∈ I , where I is a (possibly 

infinite) index set for the different species. The large-crowd dynamics, Nα∈I � 1, is captured by the hydrodynamic 
description,1 consult section 2,⎧⎪⎨

⎪⎩
∂tρα + ∇ · (uαρα) = 0;
∂t (ραuα) + ∇ · (ραuα ⊗ uα) =

∑
β∈I

∫
φαβ(|x − y|)(uβ(y) − uα(x)

)
ρα(x)ρβ(y)dy.

(1.1)

Each of the different species is identified by a pair of density/velocity (ρα, uα), subject to initial condition 
(ρα, uα)

∣∣
t=0 = (ρα0, uα0) ∈ L1+(Rd) × W 1,∞(Rd), ∀α ∈ I . There are two extreme cases: when φαβ ≡ φ the crowd 

consists of a single species driven by the same communication kernel⎧⎨
⎩

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) =
∫

φ(|x − y|)(u(t,y) − u(t,x))ρ(t,x)ρ(t,y)dy.

For the large literature on the single species hydrodynamics (as well as discrete dynamics), we refer to [1] and the 
references therein. When φαβ = φδαβ , the crowd of (1.1) splits into independent species driven by the same com-
munication kernel, thus we end up with identical copies of the single species dynamics. In this paper we study all 
the intermediate cases which involve a genuine multi-species dynamics, driven by symmetric communication array of 
radial decreasing kernels, � = {φαβ},

φαβ = φβα � 0, φαβ are radial and decreasing. (1.2)

1.2. Smooth solutions must flock

Recall that the long time behavior for the single-species model is dictated by the communication kernel φ, 
[15,22]: if the communication kernel φ admits a Pareto-type ‘fat-tail” decay,2 φ(r) � (1 + r)−θ with θ � 1, then 
“smooth solutions must flock”, namely, strong solutions of the single-species model exhibit flocking behavior as 

max
x∈supp {ρ(t,·)}

|u(t, x) − u∞| t→∞−→ 0.

This brings us to our first main result regarding the large-time behavior of the multi-species dynamics. Let �(r) :=
{φαβ(r)}α,β∈I denote the array of communication kernels associated with (1.1). The main feature here is that flocking 
of multi-species dynamics does not require direct, global communication among all species — we allow φαβ(r)

1 Unless otherwise stated, all integrals are taken over Rd .

2 And in a slightly more general setup — if φ is global in the sense that 
∞∫

φ(r)dr = ∞.
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to vanish, indicating lack of communication between some species α and β . Instead, what matters is a minimal 
requirement that the communication among species forms a connected network in the sense that there is a connecting 
path which propagates the information of alignment between every pair of species. To this end, we introduce the 
weighted graph Laplacian associated with �(r),

(
M�(r))αβ :=

⎧⎪⎪⎨
⎪⎪⎩

−φαβ(r)
√

MαMβ, α �= β;
∑
γ �=α

φαγ (r)Mγ , α = β,
(1.3)

where the weights, M := {Mα}α∈I , consist of the masses of the different species which are constant in time,

Mα :=
∫

ρα0(x)dx ≡
∫

ρα(t,x)dx > 0.

Its properties are outlined in section 3 below. In particular, the communication array �(r) forms a connected graph 
as long as its second eigenvalue λ2

(

M�(r)

)
> 0. Our main result shows that inter-species connectivity implies the 

flocking behavior of the whole crowd.

Theorem 1.1 (Strong solutions must flock). Let (ρα(t, ·), uα(t, ·)) ∈ (L∞ ∩L1+(Rd)) ×W 1,∞(Rd), α ∈ I be a strong 
solution of the multi-species dynamics (1.1), subject to compactly supported initial conditions (ρα0, uα0) with finite 
velocity fluctuations

δV0 := max
α,β∈I

sup
x,y∈S0

|uα0(x) − uβ0(y)| < ∞, S0 := ∪αsupp{ρα0(·)}.

Assume that the communication array �(r) = {φαβ(r)}α,β∈I satisfies a Pareto-type ‘fat-tail’ connectivity condition

λ2(
M�(r)) � 1

(1 + r)θ
, θ < 1. (1.4)

Then the support, S(t) := ∪αsupp{ρα(t, ·)}, remains within a finite diameter D∞ < ∞ (depending on 1 − θ, M, δV0), 
and the different species flock towards a limiting velocity u∞,∑

α∈I

∫
|uα(t,x) − u∞|2ρα(t,x)dx �

∑
α∈I

∫
|uα0(x) − u∞|2ρα0(x)dx · e−2νt , (1.5)

at exponential rate, ν, dictated by the spatial scale D∞

ν = ζMλ2(
M�∞) � ζM

(1 + D∞)θ
, �∞ := �(D∞), ζM := 1 − maxα Mα∑

α Mα

> 0.

The proof of Theorem 1.1, carried out in section 4 below, is achieved by showing the decay of the fluctuations⎛
⎝ ∑

α,β∈I

∫∫
|uα(t,x) − uβ(t,y)|pρα(t,x)ρβ(t,y)dxdy

⎞
⎠

1/p

t→∞−→ 0.

In particular, the decay of the energy fluctuations, corresponding to p = 2,

δE(t) =
∑

α,β∈I

∫∫
|uα(t,x) − uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy,

and the decay of uniform fluctuations, corresponding to p = ∞,

δV (u(t)) = max
α,β∈I

sup
x,y∈S(t)

|uα(t,x) − uβ(t,y)|, S(t) = ∪αsupp{ρα(t, ·)},

imply that the whole crowd of different species remains within a uniformly bounded finite diameter, D∞ �
D0 + Cθ · δV0 < ∞ (with Cθ � (1 − θ)

θ
1−θ ; consult (4.17) below). It follows that the fluctuations, δE(t), δV (t), 
1033
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decay at exponential rate and that all species ‘aggregate’ around a limiting velocity u∞. Since the total mass 
M(t) =∑

α

∫
ρα(t, x)dx and the total momentum m(t) =∑

α

∫
ραuα(t, x)dx are conserved in time, M(t) = M and 

m(t) = m0, it follows that the different species flock together with the only possible limiting velocity uα(t, ·) t→∞−→
u∞ := m0

M
.

Remark 1.1 (Why weighted Laplacian?). In case of equi-weighted species Mα ≡ 1, the weighted Laplacian (1.3)
amounts to the usual graph Laplacian 
�(r). Its Fiedler number, λ2(
�(r)), quantifies the connectivity of the graph 
associated with the adjacency matrix �(r), [10], [18, proposition 6.1]. Here, we advocate the use of the weighted 
graph Laplacian, 
M�(r), whose properties are outlined in section 3 below; in particular, if the number of species is 
finite, |I| < ∞, then there holds, consult (3.9),

M

κ2|I| �
λ2(
M�)

λ2(
�)
� Mκ2

|I| , κ = maxMα

minMα

, M :=
∑
α∈I

Mα, (1.6)

and hence �(r) is connected as long as λ2
(

M�(r)

) ≈M λ2
(

�(r)

)
> 0. The advantage of using the weighted 

λ2(
M�(r)), however, is that it provides the right scaling for the decay rate of multi-species dynamics (1.5), (i) in-
dependent of the condition number, κ , and (ii) independent of the number of different species, |I|. On the other 
hand, if we accept κ, |I|-dependence, then (1.6) implies that for (1.4) to hold it suffices to verify the Pareto ‘fat-tail’ 
connectivity condition λ2(
�(r)) �

M,κ,|I|(1 + r)−θ with θ < 1.

Remark 1.2 (Game of alignment). The graph Laplacian of the communication array �(r) is independent of the self-
interacting kernels {φαα | α ∈ I}. Thus, according to Theorem 1.1, flocking can be viewed as the outcome of a ‘game’ 
in which agents from one species interact with different species but are independent of the interaction with their 
own kind. Alignment dynamics based on a game within a single species was recently studied in [11]; a two-species 
ensemble dynamics in [13]. A main feature in our multi-species alignment game (of two or more species) is that one 
can ignore interactions with its own kind, i.e., set φαα = 0 in (1.1) and yet the information will eventually be reflected 
through interactions with the other connected species leading to overall flocking.

Example 1.1. Consider the case of two species with 2 × 2 symmetric communication array,

� =
⎡
⎣ 0 φ12(r)

φ21(r) 0

⎤
⎦ , φ12(r) = φ21(r) �

1

(1 + r)θ
, θ < 1.

In this case, agents in each of the two groups interact with the other group but not with their own kind (φ11 = φ22 ≡ 0). 
The large-time behavior of such ‘game’ leads to flocking.
Similarity, consider the case of four species with 4 × 4 symmetric communication array

� =

⎡
⎢⎢⎣

0 φ12 0 φ14
φ21 0 φ23 0
0 φ32 0 φ34

φ41 0 φ43 0

⎤
⎥⎥⎦ , φαβ(r) = φβα(r) � (1 + r)−μ·min{α,β}, μ < 1/3.

Again, species do not interact with their own kind, but the connectivity of inter-group interactions is strong enough to 
induce flocking.

We close this section by noting that the flocking of multi-species hydrodynamics (1.1) infers similar behavior of 
the underlying discrete multi-species Cucker-Smale dynamics⎧⎪⎪⎨

⎪⎪⎩
ẋi
α = vi

α,

v̇i
α =

∑ 1

Nβ

Nβ∑
j=1

φαβ(|xj
β − xi

α|)(vj
β − vi

α),
i ∈ 1,2, ...,Nα, α ∈ I.
β∈I
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The key feature is, again, weighted connectivity. Thus, if the communication array �(r) = {φαβ(r)}α,β∈I satisfies 
the corresponding Pareto-type ‘fat-tail’ connectivity condition λ2(
N �(r)) � (1 + r)−θ (weighted by the sizes of 
different species N := {Nα}α∈I ), then the diameter of the different species remains bounded depending on 1 −
θ, 
∑

α Nα and δv0,

max
α,β

max
i,j

|xi
α − xj

β | � D∞ < ∞, δv0 := max
i,j

max
α,β

|vi
α(0) − vj

β(0)|,

and the different species flock towards a limiting velocity v∞,∑
α∈I

|vi
α(t) − v∞|2 �

∑
α∈I

|vi
α(0) − v∞|2 · e−2νt , (1.7)

with exponential rate, ν, dictated by the spatial scale D∞. The relation between connectivity and flocking was 
motivated by our earlier study of flocking for discrete dynamics of one species, {(xi(t), vi (t))}Ni=1, governed by 
v̇i = 1

N

∑N
j=1 φ(|xj − xi |)(vj − vi ) and subject to short-range interactions, [19, Theorem 2.11]. It was shown that if 

connectivity persists in time so that

∞∫
λ2(
�(t))dt = ∞, �ij (t) = {φ(|xi (t) − xj (t)|)},

then flocking follows, vi(t) 
t→∞−→ v∞.

1.3. One- and two-dimensional smoothness — sub-critical data

The conditional statement that ‘smooth solutions must flock’ raises the question whether the multi-species dynam-
ics (1.1) admits global smooth solutions.

The case of one species was studied in one- and two-spatial dimensions. The one-dimensional well-posedness 
theory [3] provided precise characterization of global smooth solutions with sub-critical initial data, u′

0 + φ ∗ ρ0 � 0. 
Global smoothness in two dimensions was proved for sub-critical initial data outlined in [15,22]. Here we develop the 
corresponding well-posedness of multi-species dynamics (1.1) in one- and two-spatial dimensions.

The one-dimensional result is stated for non-vacuous initial data in the 1D torus.

Theorem 1.2 (Existence of smooth solutions — one-dimensional dynamics). Consider the multi-species dynam-
ics (1.1) subject to non-vacuous initial data {(ρα0 > 0, uα0)} ∈ (L∞ ∩ L1+(T )) × W 1,∞(T ). If the initial condition 
satisfies the sub-critical threshold condition

u′
α0(x) +

∑
β∈I

φαβ ∗ ρβ0(x) � 0, ∀x ∈ T , α ∈ I, (1.8)

then the multi-species dynamics (1.1) admits global non-vacuous smooth solution, (ρα, uα) ∈ C(R+; L∞ ∩L1(T )) ×
C(R+; Ẇ 1,∞(T )).

Turning to the two-dimensional case, we let (ρα, uα) be a solution of the 2D multi-species dynamics (1.1). Global 
smoothness for sub-critical initial data is quantified in terms of the spectral gap associated with the (symmetric part 
of the) 2 × 2 velocity gradient matrix e.g., [15]

Sα(t,x) := 1

2

(
∇uα(t,x) + (∇uα(t,x))�

)
, (∇uα)ij = ∂j ui

α(t, ·), i, j ∈ {1,2}.

Theorem 1.3 (Existence of smooth solutions — two-dimensional dynamics). Consider the two-dimensional multi-
species dynamics (1.1) subject to compactly supported initial conditions {(ρα0, uα0)}α∈I ∈ (L∞ ∩ L1+(R2)) ×
W 1,∞(R2). Assume a connected communication array �(r) = {φαβ(r)}α,β∈I satisfying the ‘fat-tail’ decay (1.4), 
λ2(
M�(r)) � (1 + r)−θ , θ < 1. There exists a constant C1 = C1(|φ′

αβ |∞, M, γ ) (specified in (5.14) below), such 
that if the initial fluctuations are not too large, δV0 � C1, and the following critical threshold conditions hold
1035
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div uα0(x) +
∑
β∈I

φαβ ∗ ρα0(x) > 0, ∀x ∈ R2, (1.9a)

max
x,α

|λ2(Sα(0,x)) − λ1(Sα(0,x))| < 1

2
C1, (1.9b)

then the multi-species dynamics (1.1) admits a global smooth solution (ρα, uα) ∈ C(R+; L∞ ∩ L1(R2)) ×
C(R+; Ẇ 1,∞(R2)) with large time hydrodynamic flocking behavior uα(t, x) → u∞.

1.4. Multi-species aggregation model

We turn our attention to the multi-species aggregation dynamics. The aggregation dynamics of a single-species 
arises in different contexts of modeling opinion dynamics, the rendezvous problem, etc; see e.g., [2,4,9,12,16,20] and 
the reference therein,{

∂tρ − ∇ · (((xφ) ∗ ρ
)
ρ
)= 0

ρ(t = 0,x) = ρ0(x),
∀x ∈ Rd .

Global smooth solutions tend to a Dirac mass which concentrates at the invariant center of mass. This large time 
concentration reflects the emergence of consensus (in opinion dynamics) and rendezvous problem (in distributed 
sensor-based dynamics) etc. There is also an increasing interest in two species-aggregation models, [12] and the 
recent works [6,7], and [8]. In particular, [6,7] study 1D measure-valued solutions of the 2-species dynamics after 
blow-up in the special case of φαβ ≡ φ, and [8] categorize the possible steady states of the two-species system. Here 
we extend the discussion to the multi-species setting⎧⎪⎨

⎪⎩
∂tρα −

∑
β∈I

∇ · ((xφαβ) ∗ ρβ)ρα) = 0,

ρα(t = 0,x) = ρα0(x),

∀x ∈ Rd,α ∈ I. (1.10)

The different species are identified by their densities — ρα denotes the agent density in the species α, a macroscopic 
realization of the agent-based dynamics of a species with Nα agents, each has position, xi

α , and interacts with the other 
species

ẋi
α = −

∑
β∈I

1

Nβ

Nβ∑
j=1

φαβ(|xi
α − xj

β |)(xj
β − xi

α).

In this paper, we extend the results to the multi-species setting and give explicit sufficient condition to guaran-
tee consensus under the assumption that the communication array � = {φαβ} form a connected network. Our main 
theorem is summarized in the following.

Theorem 1.4 (First-order aggregation). Let {ρα(t, ·)} ∈ W 1+(Rd) be a strong solution of the multi-species aggregation 
system (1.10) subject to compactly supported initial data (ρα0)α∈I with a finite diameter

D0 = sup
x,y∈S0

|x − y|, S0 = ∪αsupp {ρα0}

and governed by radially symmetric decreasing kernels {φαβ(r)} (1.2). Let �0 denote the communication array scaled 
at the initial diameter, �0 = {φαβ(D0)}α,β∈I . There holds

δD(t) � δD(0) · e−2ζMλ2(
M�0)t , δD(t) :=
∑

α,β∈I

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy

In particular, if the communication array �0 is connected, then the different species {ρα}α∈I aggregate towards the 
limiting position x∞∑∫

|x − x∞|2ρα(t,x)dx �
∑∫

|x − x∞|2ρα0(x)dx · e−2νt , (1.11)

α α
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at exponential rate, ν, dictated by the initial spatial scale D0,

ν = ζMλ2(
M�0), �0 = {φαβ(D0)}, ζM = 1 − maxα Mα∑
α Mα

> 0.

Remark 1.3. The proof of Theorem 1.4, carried out in section 6 below, implies that if the communication array 
{φαβ(D0)} forms a connected array then all species ‘aggregate’ around a limiting position x∞. Since the center of 

mass 
1

M(t)

∑
α

∫
ρα(t, x)xdx is conserved in time, it follows that the different species aggregate around x∞ = center 

of mass as the only possible limiting position. As before, aggregation depends on path connectivity but is independent
of the self-interacting kernels, {φαα | α ∈ I} which are allowed to vanish.

Remark 1.4 (Existence of smooth solution). Assume that xφαβ ∈ W 1,∞(Rd). Then, the multi-species dynamics which 
we rewrite as

∂tρα +
∑
β∈I

((xφαβ) ∗ ρβ) · ∇ρα = −
∑
β∈I

∇ · ((xφαβ) ∗ ρβ)ρα

implies the uniform bound

d

dt
|ρα|∞ �

∑
β∈I

|∇ · (xφαβ) ∗ ρβ |∞|ρα|∞ �
∑
β∈I

|∇ · (xφαβ)|∞Mβ |ρα|∞.

The uniform bound of the ρα’s implies higher Hs Sobolev bounds by standard energy estimates. Thus, for example 
we have the H 1-bound

d

dt

∑
α∈I

|∇ρα|22 =
∑

α,β∈I

∫
|∇ρα∇(∇ · (φx) ∗ ρβρα + φx ∗ ρβ · ∇ρα)|dx

�
∑

α,β∈I

(
|∇ρα|2|∇(φx)|∞|∇ρβ |2||ρα|∞ + 3|∇ρα|22|∇(φx)|∞|ρβ |1

)

�
∑
α∈I

|∇ρα|22.

The paper is organized as follows: In section 2, we formally derive the macroscopic model (1.1) as the large-crowd 
dynamic description of the discrete agent-based model. In section 3 we prepare the weighted Poincaré inequality 
associated with weighted graph Laplacian which will be used in the sequel. In section 4, we prove the main results 
of flocking: decay of energy fluctuations in Theorem 4.1 and decay of uniform fluctuations in 4.2, which in turn lead 
to the proof of Theorem 1.1. In section 5, we prove the existence of global smooth solutions — the one- and two-
dimensional setup in Theorem 1.2 and respectively 1.3. Finally in section 6, we treat the multi-species aggregation of 
system, proving Theorem 1.4.

2. Derivation of the mesoscopic and hydrodynamic models

In this section, we formally derive the multi-species hydrodynamics (1.1) from the underlying multi-species agent-
based dynamics. To this end, we first derive a mesoscopic Vlasov type description which in turn yields the macroscopic 
description (1.1).

To formulate the mesoscopic equation, we first define the following empirical probability measure associated to 
the species α, which represents the probability of finding an agent from species α at position x with velocity v:

fα(t,x,v) = 1

Nα

Nα∑
i=1

δxi
α(t) ⊗ δvi

α(t). (2.1)

Here Nα denotes the number of agents in the group α. Evolution of each probability density fα can be derived by 
testing ∂tfα against an arbitrary smooth function ϕ through equation (1.1)
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∫∫
∂tfα(t,x,v)ϕ(x,v)dxdv = 1

Nα

Nα∑
i=1

∂tϕ(xi
α(t),vi

α(t))

= 1

Nα

Nα∑
i=1

[ẋi
α · ∇xϕ(xi

α(t),vi
α(t)) + v̇i

α · ∇vϕ(xi
α,vi

α)] (2.2)

= 1

Nα

Nα∑
i=1

[vi
α · ∇xϕ(xi

α,vi
α) + F i

α · ∇vϕ(xi
α,vi

α)],

with an alignment forcing F i
α given by

F i
α =

∑
β∈I

1

Nβ

Nβ∑
j=1

φαβ(|xj
β − xi

α|)(vj
β − vi

α) =
∑
β∈I

Lαβ(fβ)(xi
α,vi

α),

where Lαβ(fβ)(xi
α, vi

α) :=
∫∫

φαβ(|y − xi
α|)(w − vi

α)fβ(y, w)dydw. Formal integration by parts in (2.2) yields

∫∫
∂tfα(t,x,v)ϕ(x,v)dxdv

=
∫∫

[v · ∇xϕ(x,v) +
∑
β∈I

Lαβ(fβ)(x,v) · ∇vϕ(x,v)]fα(x,v)dxdv

= −
∫∫ ⎡

⎣v · ∇xfα(x,v) + ∇v ·
⎛
⎝∑

β∈I
Lαβ(fβ)fα

⎞
⎠
⎤
⎦ϕdxdv.

Since the test function ϕ is arbitrary, the above integral equation yields the mesoscopic scale equation

∂tfα(x,v) + v · ∇xfα(x,v) + ∇v ·
⎛
⎝∑

β∈I
Lαβ(fβ)fα

⎞
⎠= 0. (2.3)

The bi-linear expression inside the parenthesis on the left represents the inter-species alignment interactions. This 
completes the derivation from the microscopic agent-based dynamics to the mesoscopic scale dynamics.

The hydrodynamic description is formally achieved by calculating the time evolution of the ‘observable moments’, 
e.g., the mass density and the momentum density:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρα(t,x) :=
∫
Rd

fα(t,x,v)dv;

ραuα(t,x) :=
∫
Rd

vfα(t,x,v)dv.

(2.4)

By integrating the mesoscopic equation (2.3) in the velocity variable v and applying integration by parts, we derive 
the mass equation for ρα:

(ρα)t + ∇x · (ραuα) = 0, ∀α ∈ I. (2.5)

The dynamics of the momentum ραuα is obtained by integrating (2.3) against v,

0 =
∫ ⎡
⎣∂t (vfα) + v(v · ∇xfα) + v∇v ·

⎛
⎝∑

β∈I
Lαβ(fβ)fα

⎞
⎠
⎤
⎦dv =: I + II + III. (2.6)

The first term is the time derivative of the momentum density, ραuα in (2.4),
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I = ∂t (ραuα); (2.7)

the second term II can be rewritten as

II = ∇x · (ραuα ⊗ uα) + ∇x ·
∫

(uα − v) ⊗ (uα − v)fα(x,vα)dv

=: ∇x · (ραuα ⊗ uα) + ∇x · Pα,

(2.8)

where Pα is interpreted as pressure tensor. For the third term III in (2.6), we use integration by parts to rewrite it as 
follows

III =
∫

v∇v ·
⎛
⎝∑

β∈I
Lαβ(fβ)fα

⎞
⎠dv = −

∑
β∈I

∫
Lαβ(fβ)fαdv

= −
∑
β∈I

∫∫∫
φαβ(|y − x|)(w − v)fβ(y,w)fα(x,v)dydwdv

= −
∑
β∈I

∫∫∫
φαβ(|y − x|)(wfβ(y,w))fα(x,v)dwdydv

+
∑
β∈I

∫∫∫
φαβ(|y − x|)fβ(y,w)(vfα(x,v))dvdydw (2.9)

= −
∑
β∈I

∫∫
φαβ(|y − x|)(ρβuβ)(y)fα(x,v)dydv

+
∑
β∈I

∫∫
φαβ(|y − x|)fβ(y,w)(ραuα)(x)dydw

= −
∑
β

∫
φαβ(|x − y|)(uβ(y) − uα(x))ρα(x)ρβ(y)dy.

Now combining (2.7), (2.8) and (2.9) we obtain the hydrodynamic momentum equation

∂t (ραuα) + ∇ · (ραuα ⊗ uα) + ∇x · Pα =
∑
β

∫
φαβ(|x − y|)(uβ(y) − uα(x))ρα(x)ρβ(y)dy.

Similar to the one-species (hydro-)dynamics, [14,17], we limit ourselves to the mono-kinetic ansatz fα(x, v) =
ρα(x)δuα(x)(v) to impose the pressure closure Pα ≡ 0, and end up with the multi-species hydrodynamics (1.1).

3. Weighted Poincaré inequalities

Given an N × N symmetric array A = {aαβ} of non-negative entries, and positive weights W := {wα}, we are 
concerned with a weighted Poincaré inequality of the form∑

α,β

aαβ |xα − xβ |2wαwβ � ν
∑
α,β

|xα − xβ |2wαwβ, ν > 0. (3.1)

The standard Poincaré (or Courant-Fisher) inequality tells us that, in case of equal weights wα ≡ 1, (3.1) holds with 
optimal ν given by the Fielder number, ν = λ2(
A)/N , where 
A is the graph Laplacian, [10], [18, proposition 6.1],

∑
α,β

aαβ |xα − xβ |2 � λ2(
A)

N

∑
α,β

|xα − xβ |2. (
A)αβ := −(1 − δαβ)aαβ + δαβ

∑
γ �=α

aαγ . (3.2)

To treat the case of general weights, we let 
WA denote the weighted Laplacian
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(
WA)αβ =

⎧⎪⎪⎨
⎪⎪⎩

−aαβ
√

wαwβ, α �= β,

∑
γ �=α

aαγ wγ , α = β.
(3.3)

Observe that 
WA is symmetric yet not row stochastic. Its second eigenvalue dictates the following weighted Poincaré 
inequality for arbitrary N -vectors x = {xα}.

Lemma 3.1 (Weighted Poincaré inequality – vectors). There holds∑
α,β

aαβ |xα − xβ |2wαwβ � λ2(
WA)∑
β wβ

∑
α,β

|xα − xβ |2wαwβ, W := {wα}. (3.4)

Remark 3.1 (Scaling). Lemma 3.1 with wα ≡ 1 recovers the regular Poincaré inequality (3.2). Observe that (3.2)
together with the obvious minw2

α � wαwβ � maxw2
α yield a desired bound (3.1) with ν = λ2(
A)/(κ2N),

∑
α,β

aαβ |xα − xβ |2wαwβ � λ2(
A)
1

κ2N

∑
α,β

|xα − xβ |2wαwβ, κ := maxwα

minwα

. (3.5)

The point to note here is that this bound in terms of λ2(
A) depends on N and the condition number κ . In contrast, 
the weighted bound (3.4) which involves λ2(
W (A)) has the right ‘scaling’, depending on the (usually invariant) 
total mass of the weights but otherwise it is independent N, κ . In particular, the size of A = {aαβ} is allowed to grow 
unboundedly large with N as long as the total weight remains finite, 

∑
β wβ < ∞.

Proof of Lemma 3.1. The sum on the left of (3.4) can be expressed as a bi-linear form in terms of the weighted 
Laplacian 
WA in (3.3) (here and below w is the vector of weights w = (w1, w2, . . .)� and we abbreviate 

√
wx =

(
√

w1x1, 
√

w2x2, . . .)�)〈
(
WA)

√
wx,

√
wx
〉 := −

∑
α

∑
β �=α

aαβ
√

wαwβ

√
wα

√
wβ xαxβ +

∑
α

∑
β �=α

aαβwβwα|xα|2

≡ 1

2

∑
α

∑
β �=α

aαβ |xβ − xα|2wαwβ,

(3.6)

which shows that the symmetric Laplacian 
WA is positive semi-definite with eigenvalues 0 = λ1 � λ2 � . . .. Here, 
λ1 is the zero eigenvalue associated with the eigenvector 

√
w := (

√
w1, 

√
w2, . . .)�,(

(
WA)
√

w
)

α
= −

∑
β �=α

aαβ
√

wαwβ
√

wβ +
∑
β �=α

aαβwβ

√
wα ≡ 0,

and hence (
WA)(
√

w x) = 0 for any constant vector x = x(1, 1, . . . , 1)�. In particular, for x =
∑

β wβxβ∑
β wβ

the or-

thogonal complement of 
√

w x is given by {√w(x − x)},
〈√

w(x − x),
√

w x
〉= 0, x :=

∑
β wβxβ∑
β wβ

,

hence〈
(
WA)

√
wx,

√
wx
〉= 〈

(
WA)
√

w(x − x),
√

w(x − x)
〉

� λ2(
WA) × |√w(x − x)|2. (3.7)

A straightforward computation yields

|√w(x − x)|2 =
∑

wα|xα|2 − 2
∑

wαxαx +
∑

wα|x|2 =
∑

wα|xα|2 − |∑β wβxβ |2∑
wβ
α α α α β
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= 1∑
β wβ

⎛
⎝∑

α,β

wαwβ |xα|2 −
∑
β

w2
β |xβ |2 −

∑
α

∑
β �=α

wαwβ xαxβ

⎞
⎠

= 1

2
∑

β wβ

⎛
⎝∑

α

∑
β �=α

wαwβ |xα|2 +
∑
α

∑
β �=α

wαwβ |xβ |2 − 2
∑
α

∑
β �=α

wαwβ xαxβ

⎞
⎠

≡ 1

2
∑

β wβ

∑
α

∑
β �=α

|xα − xβ |2wαwβ,

and (3.4) follows from (3.6) and (3.7). �
Remark 3.2 (Optimality). The proof of Lemma 3.1 shows the optimality of the weighted Laplacian ( — choose 

√
wx

as the second, Fiedler eigenvector of 
WA), leading to a Courant-Fisher-type characterization

λ2(
WA)∑
β wβ

= min|δx|w=1

∑
α

∑
β �=α

aαβ |xα − xβ |2wαwβ, |δx|2w :=
∑
α

∑
β �=α

|xα − xβ |2wαwβ. (3.8)

Hence, comparing this with (3.5) one concludes

1

κ2N
λ2(
A) � λ2(
WA)

1∑
β wβ

� κ2

N
λ2(
A), κ = maxwα

minwα

. (3.9)

The array A forms a connected graph if it has a positive Fiedler number, λ2
(

WA

)
> 0. In particular, A being a 

connected graph, the degree of its nodes is positive, 
∑
β �=γ

aγβwβ > 0. To quantify this statement which will be used 

below, we appeal to (3.4)∑
α

∑
β �=α

aαβ |xα − xβ |2wαwβ � λ2(
WA)∑
β wβ

∑
α

∑
β �=α

|xα − xβ |2wαwβ.

Fix an index γ and test the last inequality with the vector 
{

x
∣∣∣ xα =

{
0 α �= γ,

ν, α = γ.

}
, with normalization factor ν =(

2 
∑
β �=γ

wβwγ

)−1/2
so that |δx|w = 1. The sum on the left is reduced to the (γ, β)-terms with β �= γ , for which 

|xγ − xβ |2 = ν2 and (α, γ )-terms with α �= γ for which |xα − xγ |2 = ν2 and (3.4) amounts to 2ν2
∑
β �=γ

aγβwγ wβ �

λ2(
WA)∑
β wβ

and we conclude

degγ (A) :=
∑
β �=γ

aγβwβ �
∑

β �=γ wβ∑
β wβ

λ2(
WA) � ζWλ2(
WA), ζW = 1 − maxβ wβ∑
β wβ

> 0. (3.10)

Next, we extend Lemma 3.1 from vectors to vector-functions, seeking an inequality of the form∑
α,β

aαβ

∫∫
|uα(x) − uβ(y)|2ρα(x)ρβ(y)dxdy � ν

∑
α,β

∫∫
|uα(x) − uβ(y)|2ρα(x)ρβ(y)dxdy.

Clearly we can use ν = minαβ aαβ . But there is a sharper threshold, ν = νA, which allows some (– and in fact most) 
of the entries {aαβ} to vanish yet νA > 0. In particular, νA is independent of the (amplitudes of the) self-interacting 
terms {aαα}.

Lemma 3.2 (Weighted Poincaré inequality – vector-functions). Let {wγ } be non-negative weight functions with pos-

itive finite masses Mγ =
∫

wγ (x)dx > 0. There holds
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∑
α �=β

aαβ

∫∫
|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy

� ν
∑
α,β

∫∫
|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy,

(3.11)

with ν = νA given by

νA = λ2(
MA)
ζM

M
, ζM = 1 − maxγ Mγ

M
, M =

∑
γ

Mγ .

The bound (3.11) is at the heart of matter: note that the self-interacting terms∑
α

∫∫ |uα(x) − uα(y)|2wα(x)wα(y)dxdy are missing on its left but present in the lower-bound on the right.

Proof of Lemma 3.2. Denote the average, uα :=
∫

wαuα(x)dx∫
wα(x)dx

. Since 
∫
x

(
uα(x) − uα

)
wα(x)dx and 

∫
y

(
uβ(y) −

uβ

)
wβ(y)dy vanish, we can decompose the integral on the left of (3.11)∫∫

|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy

≡
∫∫ (

|uα(x) − uα|2 + |uα − uβ |2 + |uβ − uβ(y)|2
)
wα(x)wβ(y)dxdy.

We bound each of the three integrated terms on the right. Using (3.10), the first admits the lower-bound in terms of 
the weighted Laplacian – weighted by the vector of masses M = {Mα}α∈I ,

∑
α �=β

aαβ

∫∫
|uα(x) − uα|2wα(x)wβ(y)dxdy =

∑
α

⎛
⎝∑

β �=α

aαβMβ

⎞
⎠∫ |uα(x) − uα|2wα(x)dx

=
∑
α

degα(A)

∫
|uα(x) − uα|2wα(x)dx

� λ2(
MA)
ζM

M

∑
α,β

∫∫
|uα(x) − uα|2wα(x)wβ(y)dxdy.

Similarly, the third integrand is lower-bounded by

∑
α �=β

aαβ

∫∫
|uβ(x) − uβ |2wα(x)wβ(y)dxdy =

∑
β

degβ(A)

∫
|uβ(x) − uβ |2wβ(x)dx

� λ2(
MA)
ζM

M

∑
α,β

∫∫
|uβ(x) − uβ |2wα(x)wβ(x)dxdy.

Finally, by the scalar weighted Poincaré inequality (3.4), we bound the second integrand

∑
α �=β

aαβ

∫∫
|uα − uβ |2wα(x)wβ(y)dxdy =

∑
α �=β

aαβ |uα − uβ |2MαMβ

� λ2(
MA)

M

∑
α,β

∫∫
|uα − uβ |2wα(x)wβ(y)dxdy.

Adding the last three lower-bounds we end up with

∑
aαβ

∫∫
|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy
α �=β
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� λ2(
MA)
ζM

M

∑
α,β

∫∫ (
|uα(x) − uα|2 + |uα − uβ |2 + |uβ − uβ(y)|2

)
wα(x)wβ(y)dxdy

= λ2(
MA)
ζM

M

∫∫
|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy,

thus proving (3.11). �
Remark 3.3 (Alignment and de-alignment). The weighted Poincaré inequality (3.11) involves the threshold νA =
λ2(
MA)

ζM

M
which is independent of {aαα}: if A is connected then the non-diagonal fluctuation terms dominate the 

self-interacting fluctuations. In fact, this means that we can add self-fluctuations with negative amplitudes:

assume that 
{

aαβ � 0, α �= β,

aαβ � − 1
2νA, α = β,

then (3.11) still survives

∑
α,β

aαβ

∫∫
|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy

� 1

2
νA

∑
α,β

∫∫
|uα(x) − uβ(y)|2wα(x)wβ(y)dxdy, νA = λ2(
MA)

ζM

M
.

4. Smooth solutions must flock

In this section, we prove the main flocking statement in Theorem 1.1. The key observation is that the decay of both 
– the energy and uniform fluctuations are dictated by the connectivity of the multi-species configuration. To this end, 
let D(t) denote the spatial diameter of the multi-species crowd at time t

D(t) := max
x,y∈S(t)

|x − y|, S(t) = ∪αsupp{ρα(t, ·)}. (4.1)

Then �(D(t)) = {φαβ(D(t))} quantifies the minimal amplitude of communication between species α and β at time t . 
Our first result quantifies a minimal amount of connectivity which implies the decay of energy fluctuations

δE(t) :=
∑

α,β∈I

∫∫
|uα(t,x) − uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy. (4.2)

Theorem 4.1 (Decay of energy fluctuations). Let (ρα(t, ·), uα(t, ·)) ∈ L1+(Rd) × W 1,∞(Rd), α ∈ I , be a strong 
solution of the multi-species dynamics (1.1), subject to initial conditions (ρα0, uα0) with initial energy fluctuations 
δE0 = δE(0). Then we have the apriori bound

δE(t) � δE0 · exp
{

− 2ζM

t∫
0

λ2(
M�(D(τ)))dτ
}
, ζM = 1 − maxα Mα∑

α Mα

. (4.3)

In particular, if the crowd dynamics satisfies a ‘fat-tail’ connectivity condition of Pareto type (but observe the depen-
dence on D(r) in contrast to (1.4))

λ2(
M�(D(r))) � 1

(1 + r)θ
, θ < 1, (4.4)

then δE(t) decays at fractional-exponential rate

δE(t) � δE0 · e−2ν1 ·t1−θ
, ν1 = ζM

1 − θ
. (4.5)

Remark 4.1. Again, we observe that while the diagonal terms in δE on the left of (4.3) account for fluctuations within 
the same species, 

∫∫ ∑
α=β |uα(x, t) − uβ(y, t)|2ραρβdxdy, the upper-bound on the right of (4.3) involves λ2(
M�)

which is independent of (the amplitude of) the self-interaction terms, {φαα}. One learns about the behavior of its own 
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species by its reflection through interactions with the other connected species. In fact, arguing in view of Remark 3.3

we can even allow for self-interactions with de-alignment, φαα � −λ2(
M�)
ζM

2M
, and yet the overall inter-species 

alignment will override, yielding that the crowd will align towards u∞.

Proof. Since the total mass, M =
∑
α

∫
ρα(t, x)dx, and total momentum, 

∑
α

∫
ρα(t, x)uα(t, x)dx, are conserved in 

time, it follows that the decay rate of the fluctuations is the same as the decay rate of the total kinetic energy,

d

dt
δE(t) = 2M

d

dt
E(t), E(t) :=

∑
α∈I

∫
ρα(t,x)|uα(t,x)|2dx. (4.6)

A straightforward computation using the multi-species dynamics (1.1) yields

d

dt

(∑
α∈I

∫
ρα|uα|2dx

)
= 2

∫ ∑
α,β∈I

〈
ραuα, φαβ ∗ (ρβuβ) − (φαβ ∗ ρβ)uα

〉
dx

=2
∫∫ ∑

α,β∈I

(〈
ρα(x)uα(x), φαβ(|x − y|)ρβ(y)uβ(y)

〉

− ρα(x)|uα(x)|2φαβ(|x − y|)ρβ(y)
)

dxdy

=2
∫∫ ∑

α,β∈I

〈
ρα(x)uα(x), φαβ(|x − y|)ρβ(y)uβ(y)

〉
dxdy

−
∫∫ ∑

α,β∈I

(
ρα(x)|uα(x)|2φαβ(|x − y|)ρβ(y) + ρβ(y)|uβ(y)|2φβα(|x − y|)ρα(x)

)
dxdy

= −
∫∫ ∑

α,β∈I
φαβ(|x − y|)|uα(t,x) − uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy.

Since φαβ are decreasing, φαβ(|x − y|) � φαβ(D(t)), hence

d

dt
E(t)� −

∑
α,β∈I

φαβ(D(t))

∫∫
|uα(t,x) − uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy. (4.7)

We now appeal to the vector-function version of Poincaré inequality in Lemma 3.2, obtaining3

1

2M

d

dt
δE(t) �−λ2(
M�(D(t)))

ζM

M
δE(t),

and the desired bound (4.3) follows. �
The decay of energy fluctuations, δE(t), implies decay of pointwise fluctuations

δV (u(t)) = max
α,β∈I

max
x,y∈S(t)

|uα(t,x) − uβ(t,y)|.

Theorem 4.2 (Decay of uniform fluctuations). Let (ρα(t, ·), uα(t, ·)) ∈ L1+(Rd) × W 1,∞(Rd), α ∈ I , be a strong 
solution of the multi-species dynamics (1.1), subject to initial conditions (ρα0, uα0), and assume the crowd dynamics 

3 To be precise, here one employs the vector statement

λ2(
M�)∑
α Mα

= min|δu|M=1

∑
α �=β∈I

�αβ |uα − uβ |2MαMβ, |δu|2M =
∑

α �=β∈I
|uα − uβ |2MαMβ, u ∈Rd ,

which follows by aggregating the scalar components of (3.11) (as was done in [5, Sec 3.1]).
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satisfies the ‘fat-tail’ connectivity condition (4.4). Then δV (u(t)) decays at fractional-exponential rate: there exist 
constants C2 = C(max

α,β
φαβ(0), M) > 0 and ν2 = ν(θ, M) > 0 such that

δV (u(t)) � C2 · δV0 · e−2ν2 · t1−θ
, δV0 = δV (u(0)). (4.8)

Proof. We consider the strong solution (ρα, uα) in the non-vacuous region x, y ∈ S , where the alignment terms on 
the right of (1.1) admit the usual commutator form [21]

∂tuα + (uα · ∇)uα =
∑
β∈I

{φαβ ∗ (ρβuβ) − (φαβ ∗ ρβ)uα}, ∀α,β ∈ I. (4.9)

Arguing along the lines of [15], we first fix an arbitrary unit vector w ∈ Rd and project (4.9) onto the space spanned 
by w to get

(∂t + uα · ∇)〈uα(t,x),w〉 =
∑
β∈I

∫
φαβ(|x − y|)(〈uβ(t,y),w〉 − 〈uα(t,x),w〉)ρβ(t,y)dy.

Now we assume that 〈uα(t, x), w〉 reaches a maximum value at (x(t), α(t)) = (x+(t), α+(t)) and a minimum value at 
((x(t), α(t)) = (x−(t), α−(t))), denoting

u+(t) := max
α∈I

sup
x∈S(t)

〈uα(t,x),w〉 = uα+(t)(x+(t)).

We abbreviate cαβ(t) := φαβ(D(t)) and uβ(t) := 1

Mβ

∫
ρβuβ(t, y)dy. Direct computation of the time evolution of 

u+(t) yields,

d

dt
u+(t) =

∑
β∈I

∫
φα+β(|x+ − y|)(〈uβ(t,y),w〉 − 〈uα+(t,x+),w〉)ρβ(t,y)dy

�
∑
β∈I

cα+β

∫ (〈uβ(t,y),w〉 − 〈u+(t),w〉)ρβ(t,y)dy

=
∑
β∈I

cα+βMβ〈uβ(t) − u+(t),w〉

=
∑
β∈I

cα+βMβ〈uβ(t) − u∞,w〉 +
∑
β∈I

cα+βMβ〈u∞ − u+(t),w〉 =: I + II

(4.10)

We proceed to show that the first term is bounded by the (rapidly decaying) energy fluctuations while the second term 
will contribute to the pointwise fluctuations. Indeed, since

cαβ(t) � max
α,β

φαβ(D0) =: Cφ,

and Mβ

(
uβ(t) − u∞

)≡ 1

M

∑
α

∫∫
(uβ(t, y) − uα(t, x))ρα(t, x)ρβ(t, y)dxdy, then by Cauchy-Schwarz we find

I � Cφ

M

∑
α,β

(∫∫
|uβ(t,y) − uα(t,x)|2ρα(t,x)ρβ(t,y)dxdy

)1/2(∫∫
ρα(t,x)ρβ(t,y)dxdy

)1/2

� Cφ

M

(∑
α,β

∫∫
|uβ(t,y) − uα(t,x)|2ρα(t,x)ρβ(t,y)dxdy ×

∑
α,β

∫∫
ρα(t,x)ρβ(t,y)dxdy

)1/2

= Cφ

(
δE(t)

)1/2
.

On the other hand, since 〈u∞ − u+, w〉 � 0, we use the reversed lower bound (3.10)
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II � degα+(�(D(t)))〈u∞ − u+(t),w〉 � ζMλ2(
M�(D(t)))
(
u∞ − u+(t)

)
, u∞ := 〈u∞,w〉.

The last two inequalities yield

d

dt
u+(t)� Cφ

(
δE(t)

)1/2 + ζMλ2(
M�(D(t)))
(
u∞ − u+(t)

);
similarly, we estimate the time evolution of u−(t) := min

α∈I
inf
x∈S

〈uα(t, x), w〉 obtaining

d

dt
u−(t)� −Cφ

(
δE(t)

)1/2 + ζMλ2(
M�(D(t)))
(
u∞ − u−(t)

)
.

The difference of the last two bounds yields the apriori bound on δV (u(t)) := u+(t) − u−(t),

d

dt
δV (u(t)) �−ζMλ2(
M�(D(t))) · δV (u(t)) + 2Cφ(δE(t))1/2. (4.11)

Observe that δV (u(t)) = max
α,β∈I

sup
x,y∈S(t)

〈uα(t, x) − uβ(t, y), w〉 is the diameter of projected velocities on arbitrary unit 

vector w. The assumed (4.4) implies that δE(t) admits the fractional exponential decay (4.5), and we end up with,

d

dt
δV (u(t)) � −ζMλ2(
M�(D(t))) · δV (u(t)) + 2Cφ · (δE0)

1/2e−ν1 ·t1−θ
. (4.12)

Finally, (δE0)
1/2 � M · δV0 and by assumption λ2(
M�(D(t))) � (1 + t)−θ , hence (4.8) follows by integration of 

(4.12). �
Remark 4.2. Revisiting (4.10) we find

d

dt
u+(t)�

∑
β∈I

φα+β(D(t))Mβ〈uβ(t) − u+(t),w〉 � degα+(�(D(t)))max
β∈I

〈uβ(t) − u+(t),w〉

�ζMλ2(
M�(D(t)))max
β∈I

〈uβ(t) − u+(t),w〉,
and likewise

d

dt
u−(t)� ζMλ2(
M�(D(t)))min

β∈I
〈uβ(t) − u−(t),w〉.

The difference of the last two estimates yields the apriori bound

d

dt
δV (u(t) � ζMλ2(
M�(D(t))) ·

(
− δV (u(t)) + δV (u(t))

)
, δV (u) := u+ − u−. (4.13)

Since the diameter of averaged velocities δV (u) is smaller than the diameter of the velocities δV (u), (4.13) implies 
that the pointwise velocity diameter does not increase

δV (u(t)) � δV (u(t)) � δV (u(t)) � δV0. (4.14)

Note that the apriori bound (4.14) does not require any connectivity assumption; Theorem 4.2 quantifies how an 
additional ‘fat-tail’ connectivity (4.4) enforces the fractional exponential decay of δV (u(t)).

The last two theorems still require information on the dynamic growth of the supports S(t) = ∪αsupp {ρα(t, ·)}, 
in order to access the possible growth of D(t) and the corresponding decay of φαβ(D(t)) in (4.4). Our next result 
provides apriori bound how on far the different species can spread out, and this enables us to quantify flocking in 
terms of the connectivity of {φαβ(r)}, independent of the diameter dynamics. To this end, observe that according to 
the apriori bound (4.14), the velocities of the different species remain bounded, and hence the spatial diameter of the 
support of the crowd can grow at most linearly in time: indeed, tracing the particle paths (x(t), y(t)) ∈ S yields

d

dt
D(t) � δV (u(t)) � D(t) = max

x,y∈S(t)
|x − y|� D0 + δV0 · t. (4.15)

We conclude the lower-bound (recall that φαβ are decreasing) φαβ(D(t)) � φαβ

(
D0 + δV0 · t). We are now ready to 

prove Theorem 1.1.
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Proof of Theorem 1.1. proceeds in three steps.

Step #1. Fractional exponential decay. The variational characterization of the Fiedler number (3.8), implies that 
λ2(·) is an increasing function of the non-negative entries in its argument,

λ2(
M�(D(t)))

M
= min|δu|M=1

∑
α,β

φαβ(D(t)) · |uα − uβ |2MαMβ

� min|δu|M=1

∑
α,β

φαβ

(
D0 + δV0 · t) · |uα − uβ |2MαMβ

= λ2
(

M�

(
D0 + δV0 · t))
M

.

(4.16)

Hence, the Pareto decay λ2(
M�(r)) � (1 + r)−θ assumed in (1.4) implies λ2(
M�(D(t))) � (1 +D0 + δV0 · t)−θ

and the apriori estimate (4.3) implies

δE(t) � δE0 · e−2ν3 ·t1−θ
, ν3 := ζM

(1 − θ) · δV0
.

Step #2. Finite diameter. The Pareto-type condition (1.4) implies an improved flocking rate of full exponential rate. 
Indeed, the apriori bound (4.11) together with (4.16) yield

d

dt
δV (u(t)) � −(1 + D0 + δV0 · t)−θ · δV (u(t)) + 2Cφ · (δE0)

1/2e−ν3 · t1−θ
.

As before we use (δE0)
1/2 � M · δV0; integrating the last inequality we find that δV (u(t)) satisfies a fractional 

exponential decay

δV (u(t)) � δV0 · e−ν4 ·t1−θ
, ν4 = min{ν1, ν3} > 0

which in turn implies a bounded spatial diameter uniformly in time,4

d

dt
D(t) � δV (u(t)) � δV0 · e−ν4 ·t1−θ � D(t)� D∞ � D0 + Cθ · δV0 < ∞. (4.17)

Step #3. Exponential decay. We now have a uniform lower bound on the minimal communication, φαβ(D(t)) �
φαβ(D∞). Hence, the monotone increasing dependence of λ2(
MA) on the entries of A, consult (3.8), implies

λ2(
M�(D(t))) � λ2(
M�∞) > 0, �∞ := {φαβ(D∞)}. (4.18)

We revisit the energy apriori fluctuations bound (4.3), obtaining the exponential decay

δE(t) � δE0 · e−2νt , ν = ζMλ2(
M�∞).

Since 
∑
α

∫
|uα(t, x) − u∞|2ρα(t, x)dx ≡ 1

2M
δE(t), exponential flocking (1.5) follows. Moreover, revisiting the 

uniform fluctuations (4.8) with (4.18) yields the exponential decay

max
α∈I

sup
x∈S(t)

|uα(t,x) − u∞|� δV0 · e−νt . � (4.19)

4 Tracing the dependence of Cθ on θ we find Cθ �
∞∫

e−ν4·t1−θ
dt with ν4 � 1

1−θ
which yield Cθ ∼ (1 − θ)

θ
1−θ .
0
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5. Existence of global smooth solutions

5.1. Critical threshold in one-dimensional flocking dynamics

Proof of Theorem 1.2. Taking spatial derivative of the momentum equation (1.1) yields

(∂t + uα∂x)

⎛
⎝∂xuα +

∑
β∈I

φαβ ∗ ρβ

⎞
⎠= −∂xuα

⎛
⎝∑

β∈I
φαβ ∗ ρβ + ∂xuα

⎞
⎠ , ∀α ∈ I. (5.1)

Thus, the “e”-quantities, eα := ∂xuα +∑β φαβ ∗ρβ satisfy ∂t eα +∂x(uαeα) = 0 and pairing it with the mass equations 
∂tρα + ∂x(uαρα) = 0 yields

∂tqα + uα∂xqα = 0, qα := eα

ρα

.

It follows that qα � 0 and hence eα � 0 are invariant zones: if eα(t = 0, x) � 0 for all x ∈ T then

∂xuα +
∑
β∈I

φαβ ∗ ρβ � 0, ∀t � 0. (5.2)

Moreover, arguing along the lines of [21, sec. 3]

∂tρα + uα∂xρα = −∂xuαρα = −
⎛
⎝eα −

∑
β∈I

φαβ ∗ ρβ

⎞
⎠ρα = −qαρ2

α + ρα

∑
β∈I

φαβ ∗ ρβ,

and the uniform bound |eα/ρα(t, ·)|∞ � |eα/ρα(0, ·)|∞ < ∞ reveals that ρα remains bounded away from vacuum.
Since φαβ are uniformly bounded, we obtain the lower bound,

∂xuα(x, t) � −
∑
β∈I

|φαβ |∞Mβ, ∀(t, x) ∈ (R+,T ), α ∈ I. (5.3)

On the other hand we can see directly from the equation (5.1) that ∂xuα has an upper bound for all time. Combining this 
with the lower bound, we have that |∂xuα|∞ � C < ∞ for all time and the existence of strong solutions follows. �
5.2. Critical threshold in two-dimensional flocking dynamics

Proof of Theorem 1.4. Our purpose is to show that the derivatives {∂j ui
α} are uniformly bounded. We proceed in 

four steps along the lines of [15] for the case of two-dimensional single species dynamics.

Step #1 — the dynamics of div uα +∑
β∈I φαβ ∗ρβ . Differentiation of (4.9) implies that the velocity gradient matrix, 

(∇uα)ij = ∂j ui
α , satisfies

(∇uα)t + uα · ∇(∇uα) + (∇uα)2 = −
∑
β∈I

φαβ ∗ ρβ∇uα + Rα, (5.4)

where the entries of the residual matrices

(Rα)ij :=
∑
β∈I

∫
∂jφαβ(|x − y|)(ui

β(y) − ui
α(x))ρβ(y)dy,

do not exceed |(Rα)ij | �∑
β∈I |φ′

αβ |∞Mβ · δV (t). The entries of the residual matrix {(Rα)ij } can be estimated using 
the exponentially decaying velocity fluctuations (4.19)

|(Rα)ij |�
∑
β∈I

|φ′
αβ |∞Mβ · δV (t) � δV0 · e−2νt . (5.5)
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The first step is to bound the divergence: taking the trace of (5.4) we find that dα := ∇ · uα satisfies

(∂t + uα · ∇)dα + Tr (∇uα)2 = −
⎛
⎝∑

β∈I
φαβ ∗ ρβ

⎞
⎠dα + TrRα. (5.6)

Arguing along the lines of [3] we invoke the mass equation and obtain the following relation,

TrRα =
∑
β∈I

φαβ ∗ ∇ · (ρβuβ) −
∑
β∈I

uα · ∇φβ ∗ ρβ = −
⎛
⎝∑

β∈I
φαβ ∗ ρβ

⎞
⎠

t

− uα · ∇
⎛
⎝∑

β∈I
φαβ ∗ ρβ

⎞
⎠

= −
⎛
⎝∑

β∈I
φαβ ∗ ρβ

⎞
⎠

′
,

where (·)′ denotes the material derivative, (·)′ := (∂t + uα · ∇x)(·). Similar to [15], we define the following two 
quantities

∇uα = Sα + �α, Sα = 1

2
(∇uα + ∇u�

α ), �α :=
(

0 −ωα

ωα 0

)
, (5.7)

where ωα is the scaled vorticity ωα = 1
2 (∂1u2

α − ∂2u1
α). The symmetric part Sα has two real eigenvalues, i.e., 

λ1(Sα) � λ2(Sα). Next, we recall the identity relating the trace Tr (∇uα)2 to the spectral gap, λ2(Sα) − λ1(Sα) � 0, 
[15, eq. (2.11)],

Tr (∇uα)2 ≡ d2
α + η2

α − 4ω2
α

2
, ηα := λ2(Sα) − λ1(Sα) � 0. (5.8)

Expressed in terms of ηα , the trace dynamics (5.6) now reads⎛
⎝dα +

∑
β∈I

φαβ ∗ ρβ

⎞
⎠

′
= 1

2
(4ω2

α − η2
α) − 1

2
dα

⎛
⎝dα + 2

∑
β∈I

φαβ ∗ ρβ

⎞
⎠ .

This calls for the introduction of the new “natural” variable eα = dα +∑
β∈I φαβ ∗ ρβ , satisfying

e′
α = 1

2

⎛
⎝(∑

β∈I
φαβ ∗ ρβ

)2

+ 4ω2
α − η2

α − e2
α

⎞
⎠ . (5.9)

Our purpose is to show that {x | eα(t, x) � 0, ∀α ∈ I} is invariant region of the dynamics (5.9).

Step #2 — bounding the spectral gap ηα . Consider the dynamics of the symmetric part of (5.4)

(Sα)t + uα · ∇Sα + S2
α − ω2

α

4
I2×2 = −

∑
β∈I

φαβ ∗ ρβSα + Rα,sym, Rα,sym = 1

2
(Rα + R�

α ).

The spectral dynamics of its eigenvalues λi(Sα) is governed by

λ′
i + λ2

i = ω2
α −

⎛
⎝∑

β∈I
φαβ ∗ ρβ

⎞
⎠λi + 〈

si
α,Rα,symsi

α

〉
(5.10)

driven by the orthonormal eigenpair {s1
α, s2

α} of the symmetric Sα . Taking the difference, we find that ηα = λ2(Sα) −
λ1(Sα) � 0 satisfies,

(ηα)′ + eαηα = qα, qα := 〈
s2
α,Rα,syms2

α

〉− 〈
s1
α,Rα,syms1

α

〉
. (5.11)

The residual term qα is upper-bounded by the size of the entries {Ri
α,j } in (5.5), |qα(t, ·)|∞ � 2 maxij |Ri

α,j (t, ·)|∞ �
δV0 · e−2νt . Hence, as long as eα(t, ·) remains positive, the spectral gap does not exceed
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|ηα(t,x)| � max
x

|ηα(0,x)| + Const.
δV0

ν
< C1. (5.12)

The first inequality on the right follows from integration of (5.11); the second follows from the assumed bound on 

|ηα(0)| � 1
2C1 in (1.9b), and our choice of small enough δV0 � C1, so that Const.

δV0

ν
� 1

2
C1; the constant C1 is yet 

to be determined.

Step #3 — The invariance of eα(t, ·) � 0. We return to (5.9): expressed in terms of the lower bound 
∑

β∈I φαβ ∗ρβ �∑
β∈I φαβ(D∞)Mβ we find

e′
α � 1

2

(
b2
α − e2

α

)
, bα(t,x) :=

√√√√√
⎛
⎝∑

β∈I
φαβ(D∞)Mβ

⎞
⎠

2

− η2
α(t,x). (5.13)

Observe that bα are well-defined: we set

C1 := 1√
2

min
α

∑
β∈I

φαβ(D∞)Mβ, (5.14)

so that the upper-bound (5.12) implies⎛
⎝∑

β∈I
φαβ(D∞)Mβ

⎞
⎠

2

− η2
α(t,x) � 1

2
C2

0 � bα(t,x) � c− := 1√
2
C1 > 0.

Since e′
α � 1

2 ((c−)2 − e2
α) = 1

2 (c− − eα)(c− + eα), it follows that eα is increasing whenever eα ∈ (−c−, c−) and in 
particular, if eα(0) � 0, ∀α ∈ I then eα(t, x) remains positive at later times. Thus, if the initial data are sub-critical in 
the sense that (1.9a) holds

eα(0,x) = div uα(0,x) +
∑
β∈I

φαβ ∗ ρα(0,x) � 0, ∀x ∈ R2,

then eα(t, ·) � 0 and ηα(t, ·) remains bounded.

Step #4 — an upper-bound of eα(t, ·). The lower-bound eα � 0 implies that the vorticity is bounded. Indeed, the 
anti-symmetric part of (5.4) yields that the vorticity ωα satisfies

ω′
α + eαωα = 1

2
TrJRα, J =

(
0 −1
1 0

)
(5.15)

hence applying (5.5) yields

|ωα|′ � −eα|ωα| + 1

2
|qα|, |qα(t, ·)| � δV0 · e−2νt (5.16)

and we end up with same upper-bound on ωα as with ηα ,

|ωα(t, ·)|∞ � (ωα)+, (ωα)+ := max
x

|ωα(0,x)| + 1

2
C1. (5.17)

Returning to (5.9) we have

e′
α � 1

2

((∑
β∈I

φαβ ∗ ρβ

)2

+ 4ω2
α − e2

α

)
� 1

2

((∑
β∈I

|φαβ |∞Mβ

)2

+ 4(ωα)2+ − e2
α

)
,

which implies that |eα(t, ·)|∞ � (eα)+ < ∞. The uniform bound on eα implies that div uα is uniformly bounded, 
| div uα| � |eα|∞ +∑

β∈I |φαβ ∗ ρβ |∞ � (eα)+ +∑
β∈I |φαβ |∞Mβ , and together with the bound on the spectral gap 

(5.12), it follows that the symmetric part {Sα} is bounded. Finally, together with the vorticity bound (5.17) it follows 
that {∂j ui

α} are uniformly bounded which completes the proof. �
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6. Multi-species aggregation dynamics

In this section, we prove Theorem 1.4. We begin by letting x∞(t) denote the center of mass at time t , i.e.,

x∞(t) := 1

M

∑
α∈I

xα(t), xα(t) =
∫
Rd

ρα(t,x)xdx. (6.1)

The total mass M =∑
α

∫
ρα(t, x)dx is conserved in time. Moreover, by the assumed symmetry of the � = {φαβ}

array, the total first moment is also conserved in time,

d

dt

∑
α∈I

∫
ρα(t,x)xdx = −

∫∫ ∑
α,β∈I

φαβ(|x − y|)(x − y)ρβ(t,y)ρα(t,x)dxdy = 0,

since the last integrand in anti-symmetric in (x, y). Hence the center of mass is invariant in time x∞(t) = x∞(0).
By assumption, initial densities ρα(0)’s are compactly supported. What distinguishes the first-order multi-species 

aggregation dynamics (1.10) is the fact that the diameter of this support does not increase in time, in contrast to the 
possible expansion (4.17) of D(t) in the second-order flocking dynamics (1.1).

Theorem 6.1 (Uniformly bounded support). Consider a strong solution of (1.10), {ρα(t, ·) ∈ W 1+(Rd), α ∈ I}, sub-
ject to compactly supported initial data {ρα0}. Then the diameter of its support,

D(t) := sup
x,y∈S(t)

|x − y|, S(t) = ∪αsupp {ρα(t, ·)}

does not increase in time D(t) �D0.

Proof. There are various approaches to trace the diameter D(t) for one-species dynamics, e.g., [2,4]. Here we proceed 
by considering the p-weighted diameter (p-Wasserstein metric),

Wp(ρ(t)) :=
∫∫ ∑

α,β∈I
|x − y|pρα(t,x)ρβ(t,y)dxdy.

We abbreviate dmαβγ (t, x, y, z) = ργ (t, z)ρα(t, x)ρβ(t, y)dxdydz. Differentiation yields

1

2

d

dt
Wp(ρ(t)) = 1

2

∫∫ ∑
α,β∈I

|x − y|p(∂tρα(t,x)ρβ(t,y) + ρα(t,x)∂tρβ(t,y)
)
dxdy

= −
∫∫∫ ∑

α,β,γ∈I
p|x − y|p−2〈(x − y), (x − z)〉φαγ (|x − z|)dmαβγ (t,x,y, z).

(6.2)

The convexity of | · |p implies |w − v|p � |w|p − p|w|p−2〈w, v〉 which in turn, setting w = x − y and v = x − z, 
shows that the last integral does not exceed

−
∫∫∫ ∑

α,β,γ∈I
p|x − y|p−2〈(x − y), (x − z)〉φαγ (|x − z|)dmαβγ (t,x,y, z)

�
∫∫∫ ∑

α,β,γ∈I

(|z − y|p − |x − y|p)φαγ (|x − z|)dmαβγ (t,x,y, z)

=
∫∫∫ ∑

α,β,γ∈I
|z − y|pφαγ (|x − z|)dmαβγ (t,x,y, z)

−
∫∫∫ ∑

α,β,γ∈I
|x − y|pφαγ (|x − z|)dmαβγ (t,x,y, z) =: I + II.

Now exchange α ↔ γ and x ↔ z in I to conclude that I + II = 0, hence Wp(ρ(t)) � Wp(ρ(0)). In particular, letting 
p ↑ ∞ yields the desired result D(t) �D0. �
1051



S. He and E. Tadmor Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 1031–1053
The case p = 2 deserves special attention: in this case, we can quantify the strict decay rate of W2(ρ(t)) in term of 
the connectivity of the communication array �(r).

Theorem 6.2 (Decay of weighted diameter). Consider a strong solution of (1.1), {ρα(t, ·) ∈ W 1+(Rd), α ∈ I}, subject 
to compactly supported initial data ρα0 and communication array �0 = {φαβ(D0)}α,β∈I . Then the weighted diameter 
δD(t) satisfies

δD(t) � e−2ζMλ2(
M�0)t · δD(0), δD(t) =
∑

α,β∈I

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy. (6.3)

Proof. We begin with computing the time evolution of δD(t) = W2(ρ(t)) in (6.2): the special case p = 2 yields, upon 
exchange x ↔ z,

d

dt

⎛
⎝ ∑

α,β∈I

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy

)

= −2M
∑

α,β∈I

∫∫
φαβ(|x − y|)〈(x − y),2x〉ρβ(t,y)ρα(t,x)dxdy.

Alternatively, since the center of mass 
∑

α

∫
ρα(t, x)xdx is invariant in time, the change of the weighted diameter 

d

dt
δD(t) equals the rate of the total second moment 

∑
α∈I

∫
|x|2ρα(t, x)dx; arguing along the lines of the proof of 

Theorem 4.1 we find

1

2M

d

dt

⎛
⎝ ∑

α,β∈I

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy

)
= d

dt

(∑
α∈I

∫
|x|2ρα(t,x)dx

)

= −
∑

α,β∈I

∫∫
φαβ(|x − y|)〈(x − y),2x〉ρβ(t,y)ρα(t,x)dxdy

= −
∑

α,β∈I

∫∫
φαβ(|x − y|)|x − y|2ρα(t,x)ρβ(t,y)dxdy

�−
∑

α,β∈I
φαβ(D0)

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy.

The last step follows from |x − y| � D(t) � D0 and recalling that φαβ are decreasing. Using the vector version of 
Poincaré inequality (3.11) with (uα(x), uβ(y)) = (x, y) we conclude

1

2M

d

dt

∑
α,β∈I

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy

�− λ2(
M�(D0))
ζM

M

∑
α,β∈I

∫∫
|x − y|2ρα(t,x)ρβ(t,y)dxdy.

The bound (6.3) follows. �
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